名無し.ch

教育のこととか化学のこととか機械学習のこととか、気の向くままにいろいろ書いてみようと思います。

TensorFlowスタートガイドをGoogle Colaboratoryで。

f:id:nama-pit:20181101234158j:plain

やっぱりMachine LearningやるならTensorFlowに触りたい!

こんな願望、みんなありますよね。
地道に写経してたんですけど、やっぱりどうせならTensorFlowやりたい!
だってGoogle ColaboratoryではTPUも使えるんだもん!
という駄々っ子のような論理(感情)に押されて、Machine Learningをちょっとすっ飛ばして
TensorFlowやってみました。

やってみた感想

正直、写経しただけなので、「こうすれば動くんだ!」とか
「こうすれば学習ができるんだ!」とか
「学習が足りない時はepochを増やすと繰り返し学習して、学習した範囲での予測精度が上がる!」とか
まぁその程度です。
でも、この前まで機械学習でsklearnとかPerceptronとか頑張ってやってたのが
嘘みたいに簡単にかけたので、それだけでもめちゃめちゃ感動しました。
やっぱりTensorFlowはすごい!

一気に主流に上り詰めたのも分かるなぁ。

動かしてみたコード

TensorFlowスタートガイドにある最初のmnist

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation = tf.nn.relu),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation = tf.nn.softmax)
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

TensorFlowスタートガイドのbasic classification

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)


fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()


class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

train_images.shape


len(train_labels)


train_labels



plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)


train_images = train_images / 255.0

test_images = test_images / 255.0


plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])


model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])


model.compile(optimizer=tf.train.AdamOptimizer(), 
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])


model.fit(train_images, train_labels, epochs=15)


test_loss, test_acc = model.evaluate(test_images, test_labels)

print('Test accuracy:', test_acc)


predictions = model.predict(test_images)


predictions[0]


np.argmax(predictions[0])


def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  
  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'
  
  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array[i], true_label[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1]) 
  predicted_label = np.argmax(predictions_array)
 
  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')


i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)


i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions,  test_labels)


# Plot the first X test images, their predicted label, and the true label
# Color correct predictions in blue, incorrect predictions in red
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions, test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions, test_labels)


# Grab an image from the test dataset
img = test_images[0]

print(img.shape)


# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)


predictions_single = model.predict(img)

print(predictions_single)


plot_value_array(0, predictions_single, test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)


np.argmax(predictions_single[0])

 MIT License
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.